
Dispersive water-wave equations: a paradigm of the Painleve conjecture

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 L585

(http://iopscience.iop.org/0305-4470/21/11/003)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) L585-L591. Printed in the UK 
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Dispersive water-wave equations: a paradigm 
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Abstract. We have analysed the equation of dispersive water waves within the formalism 
of a singular point analysis of the Painlevd conjecture. It is interesting to observe that the 
two different similarity reductions lead to apparently different-looking ordinary differential 
equations with a similar singularity structure. While one is a pure Painlevd equation, the 
other is not. On the other hand, a direct analysis of the PDE itself shows resonances at 
r = -1, 2, 3, 4 which contain those of the ODE. If, however, we adopt the exact procedure 
of Weiss et a1 and try to truncate the expansion then it is seen that the set of equations 
obtained are not overdetermined. Thus it is not possible to derive the Lax pair via the 
Painlev6 analysis but a Backlund transformation can be written. The number of arbitrary 
coefficients is seen to be in conformity with the Cauchy-Kowalevskaya theorem. 

Very recently the equations of dispersive water waves were analysed by Kupershmidt 
[ l]  within the formalism of Gel’fand and Dorfman [2] in relation to its multi- 
Hamiltonian structure. It was shown that there actually exists an infinite number of 
commutative Hamiltonian flows corresponding to the infinite number of conservation 
laws. This equation describing dispersive waves was solved by the IST procedure by 
Kaup and by Jaulent and Jean [3]. As is known, the existence of such properties is 
indicative of the complete integrability of such systems of equations (though there are 
some examples where this is not true). Here we have performed a singular-point 
analysis for a Painlev6 test of this pair of equations. 

At present there are three different approaches for the PainlevC analysis. 
(i) In the first approach (as advocated by Ablowitz et a1 [4]) one uses the group- 

theoretic reduction to reduce the non-linear partial differential equations ( NLPDE) to 
ordinary differential equations (ODE) which should be analysed regarding the pole 
structure. One should have all possible reductions of the PDE to ODE. 

(ii) Next is the approach of Weiss er a1 [5] by which we seek the PainlevC property 
of the original NLPDE and it is suggested that if the number of equations for the 
unknown coefficients of expansion are very large and are overdetermined only then it 
will be possible to truncate the expansions at the constant level and to deduce the Lax 
pair. 

(iii) Thirdly, we mention the simplified version of the approach due to Kruskal 
[ 6 ] ,  where one determines only the resonance position and demonstrates the arbitrari- 
ness of the expansion coefficients in order to check the conformity with the Cauchy- 
Kowalevskaya theorem. 

t Permanent address: High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta 
700032, India. 
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In our present analysis we have here applied all these three approaches to obtain 
a decisive answer to the complete integrability of the set of equations under consider- 
ation. It is interesting to observe that although some common features arise from these 
various methods of analysis, they are neither completely identical nor do they contradict 
each other. 

The equation pair is 
U, = U,, + h, + UU, 
h, = -hxx + hu, + h , ~ .  

( 1 )  

Following Bluman and Cole [7] one can immediately determine the Lie point sym- 
metries of ( 1 )  and hence observe that ( h ,  U )  have the following similarity form: 

Then (1) reduces to 
2f’ = - ( l /z2) (2g  - g’) + (2/Z)(g’-gg’) -g’“‘’ 

f + zf ’ + 2f’ + 4zf ”+ fg/ z - 2( g f )’ 
(2’) 

where f’= - f / z ,  g’= -g /z  and z = x 2 / t .  The eliminant of (2) is 
1 6 ~ ~ g “ ’ = g ( z ~ +  12) - 3 g 3 -  ~ g ~ + 6 ~ g ~ g ’ + g g ’ ( 4 ~ + 6 ~ ~ )  

+ g’( -162 + z2 - 2Az2) + ZA - z’A. (3) 
This equation cannot be integrated further, so it does not reduce to a second-order 
non-linear ordinary equation. Although ordinary non-linear equations of only second 
order have, in general, been classified and analysed from the point of view of PainlevC 
analysis, one can nevertheless follow the same methodology to study higher-order 
equations and prove similar theorems [8]. Very recently a non-linear ordinary equation 
of third order with properties similar to that of the Painlev6 class has been studied by 
Martynov [9]. We therefore proceed here with a singular-point analysis of this third- 
order equation. We can, however, perform a singular-point analysis by setting 

g = ao( z - Z0)P 

16zg”’ and 6zg’g’ matches with p = - 1 , .  . . . (4) 

when 

It is to be kept in mind that for the matching we have expanded each z-dependent 
coefficient in the neighbourhood of zo as 

z3  = ( z - z0 + z ~ ) ~  
= ( z  - zo) + 3 2 3  z - zo) + 3z0( z - z 0 y  + z: 

etc. 
Actually (3) can be written as 

1 6[ ( z - z,,)~ + 3 ( z - zO)~ZO + 3 ( z - zO) Z; + z:] g ” 
= g[(z - zo) +2z0(z - 2 0 )  + z;+ 121 -3g3  

+ g’[ ( z  - z0)3+ 3z0(z - zo)2 + 3 2 7 2  - zo) + z : -  12(z - zo) - 12201 
- 2g2+ 6gg’[(z - ~ 0 ) ~  + ~ z O ( Z  - zO) + z;] + 6g’g2[(z - zO) + zO]. ( 5 )  

g=ao(z-zo) - ’+ao(z -zo)P- ’  (6) 
To determine the resonance we set 
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whence we get ao=4z, and comparing the coefficients of ( Z - Z , ) ~ - ~  we observe that 
p satisfies an equation of the form 

p ( p  - l ) (p  - 5)  + 12 = 0 or ( p  + l ) ( p  -4)(p - 3) = 0. (7) 

So we have resonances at p = -1,3,4.  It is not difficult to proceed further and check 
the arbitrariness of the expansions at these resonances so that for a third-order equation 
if we get three resonances and three arbitrary constants, we certainly satisfy the 
Cauchy-Kowalevskaya criterion. We now observe that our equation (3) has satisfied 
the Cauchy-Kowalevskaya condition so it may be possible by suitable and intricate 
manipulation to reduce it to one of the second-order ODE of PainlevC type according 
to the method of [lo] in which Bureau discusses both third-order and second-order 
ODE of PainlevC type, but in our case it is not very apparent. On the other hand, it is 
really not surprising that a third-order equation possess the requisite properties (see [9]). 

Another reduction that follows from the translation invariance is 

h = h ( x  - u t )  U = u ( x  - u t )  z = x - ut. (8) 

Then we obtain 

- vu '=  U"+ h'+ uu' 

- uh' = -h"+ (uh)'  

and again if we eliminate h we obtain 

(9) 

where we have chosen the constant of integration to be zero. Equation (10) is similar 
to the PainlevC equation discussed by Ince [8] and can actually be solved by elliptic 
functions. On the other hand, we have by singularity analysis U = ao(z - zo)-' with 
resonances at r = -1,4, which is a subclass of both the sets given by (7) and (8). Note 
also that (10) is a second-order equation. 

Next we turn to the direct analysis of the PDE by a method originally suggested by 
Weiss and later simplified by Kruskal. Here, after the determination of the leaading 
exponents we set 

j = O  

m 

h = c b j ( t ) V - ' ( x ,  t ) .  
j = O  

For the determination of the leading exponents we set U = a,( t ) + " ( x ,  t ) ,  h = 
b 0 ( t ) 4 @ ( x ,  t ) .  Then we observe that two cases may arise: 

(I)  a = -1, /3 = -2 for which a0 = -2 and bo = -4, and 
(11) a = -1, /3 = 1,2  for which a, = 2 and bo is not determined. 

Therefore in case I we set 

m m 

U = c a j ( t ) r$ - ' (x ,  t )  h = C bj(r)+j-'(x, t ) .  
j = O  j = O  
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The recursion relations obtained are 

I 

bj-,,, + ( j - 3 ) b j - l ~ l  + ( j  -2 ) ( j  -3)bj = C ~ , - ~ b ~ ( J - 3 ) .  
k=O 

From these relations it is not difficult to guess that the equations leading to the resonance 
positions are 

( r +  l ) ( r -2)(  r -3)(r -4) = 0. (14) 

Thus we get resonances at r = -1,2,3,4. The resonance at r = -1 corresponds to the 
arbitrariness of 4. We now proceed to check the coefficients at r = 2,3,4 via (9) and 
(10): 

f o r j = 0  bo= -4 (15a) 

a,= -2 (156) 

for j =  1 a1 = 41 bl = O  

f o r j = 2  aor = 0 (identically satisfied) 

b2 = -2a2 

f o r j = 3  b3 = 411 

b,, = O  
azr - a: = 2 b, + 2a, 

bzl + a2b2 +4a,+ 2b4 = 0. 

f o r j = 4  

Now using (17) and (18) we observe that the second equation of (18) is 
4a4+2b4=2a21+2a: or 2a4+b4=  a2r+a2 .  2 

Together with (16) this implies that 

b, = -2a: and 2a4 = all + 3a: 

so that the coefficients at the resonance positions r = 2,3,4 are undetermined, and it 
seems that we may conclude that the equation pair is completely integrable. 

In case I1 we set identically 

U = a o 4 - ' + a l + p - '  
h = bo+ + b,@'". 

After substitution and equating coefficients of 4'-' we obtain 

a,  bop + b, P( 1 - P) = 0 

a( p - 1)( p - 2) + 2( p - 2) = 0 

so that the system matrix is 

p(l  = O 
bo P 

[ (P - l ) (P -2 )+2(P-2 )  0 
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leading to p = 0, - 1 ,  1 ,  2, so we again get four resonances including that at p = -1. 
Arbitrariness of  the coefficients can be checked as previously. Note that in case I1 we 
could also set 

u=a,f$-’+a,r#P-’ 

h = bo42+ b14p’2. 
The resonance positions are then seen to be at 

p = 0, - 1 ,  -1,2. 

Having a double resonance at p = -1, we lose one arbitrariness and this branch does 
not pass the PainlevC test. In the former class of this case, i.e. Q = $ 1 ,  p = +1, we set 
out to ascertain the arbitrariness of the coefficients. We set 

U = Uj(  t ) + J - I ( x ,  t )  

h = bj( t )~$ ’” (x ,  t ) .  
The recursion relations are 

a , - 2 , , + a , - 1 ( j - 2 ) 4 , = a j ( j - l ) ( j - 2 ) 4 : + b j - 3 ( j - 2 ) 4 ~ +  aj-kak(k-1)4,  
j 

k=O 
(26) 

j 

bj-3,r + jbj- ,  4, = bj( j + 1)j4: + i bj-k( k - 1 )  U k 4 x  Uj-kbk ( k  1 )  &. 
k=O k = O  

From these we easily obtain a. = 2, a ,  = +,, b,  = 0, = 4az3 + bo and bo, = lob2+ 2boa2, 
so that boo, a l ,  a2 ,  b2 are all arbitrary and we again can satisfy the Cauchy-Kowalev- 
skaya condition. 

Let us now modify and extend the above calculations further and try to apply the 
full machinery of Weiss et a1 [ 5 ]  without any simplification. That is, we now set 

U = a,(x, f ) ( b J - l ( x ,  t )  
j = O  

m 

Resonance positions are determined as before to be at r = -1,2,3,4. We now proceed 
to check the coefficients at the resonance positions: 
for k = 0 a, = 

bo = -44 f; 
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For j = 2 before writing down the equations we make the following observations. In 
the formalism of Weiss we usually cut off the series expansions (18) at a constant level, 
i.e. we demand 

u = a , ~ - ' + a ,  

h = bo4-2+ b 1 4 - ' +  b2 

by setting ai = 0, i 3 2, and bj = 0, j 3 3. If we use these then 

f o r j = 2  

For j = 3  ~ l l + ~ l x x = ~ , x ~ , + ~ o x ~ 2 + ~ l ~ l . + ~ , ~ 2 x  

a11 = ~ , x x + b 2 , + ~ 1 ~ 1 .  

b2 = -b2xx + (a1b2)x 

432  = --24X&l+ 2414XX + 2 4 L  - 24x4xx.x 

and the other equation at j = 2 is identically satisfied. 

(which is the equation for U). 

For j = 4 (34) 

(which is the equation for h )  and the other equation is an identity. Due to truncation 
we must prove the consistency of (22), (24) and the first equation of (25). 

From (24) differentiating with respect to x we have 

Using (29) for b, and b, we observe from (35) that 4 satisfies the equation 

4 1 X  + 4 x x x  = 0 or 41 + 4 x x  = 4 t )  (36) 

which is nothing but the diffusion-type linear equation. If we consider a special case 
where the constant c is zero then the most general solution of (36) can be written as 

4 = F (  t) exp (x2/4t). 

U = (log 4)x = x/2t 

Now let us apply (31) by starting with the trivial solution a, = b2 = 0. Then 

h =4(d/ax)(4,/4) =2 / t .  

One can immediately verify that U = x/2t, h = 2 / t  is a solution of ( l) ,  so it is proved 
that (31) is a Backlund transformation when 4 is a solution of (36). Thus by proceeding 
in the method of Weiss we have actually constructed a Backlund transformation for 
the dispersive water-wave problem. 

In our above analysis we have presented a detailed analysis of the dispersive 
water-wave equation regarding its complete integrability. In each method we have 
determined the resonance positions and have checked the arbitrariness of the 
coefficients theorem. It is an interesting outcome of our analysis that even when a Lax 
pair cannot be obtained (in the case of a coupled system it is not known how to derive 
a Law pair from PainlevC analysis), a Backlund transformation can actually be construc- 
ted which generates non-trivial solutions from trivial ones. We have obtained a 
third-order ODE which satisfies the PainlevC property. The third-order ODE of PainlevC 
type has, however, been studied previously by Bureau [ 101. 
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